RN i TR | L7 ' "-'-,-r r-frl %] ... ;
S BN EE I VS8 527 A A RGN MK R NS

All-Pairs-Shortest-Paths for Large
Graphs on the GPU

Gary J Katz!?, Joe Kider?

tUniversity of Pennsylvania
’Lockheed Martin IS&GS

"08

What Will We Cover?

e Quick overview of Transitive Closure and All-Pairs
Shortest Path

» Uses for Transitive Closure and All-Pairs
 GPUs, What are they and why do we care?

 The GPU problem with performing Transitive Closure
and All-Pairs....

 Solution, The Block Processing Method
 Memory formatting in global and shared memory

e Results

1

Previous Work

» “A Blocked All-Pairs Shortest-Paths Algorithm”

Venkataraman et al.

 “Parallel FPGA-based All-Pairs Shortest Path in a
Diverted Graph”

Bondhugula et al.

 “Accelerating large graph algorithms on the GPU using
CUDA”

Harish

908

NVIDIA GPU Architecture

Thiread Emuum HI‘I‘F o

I:IED
E] E] E] [[||| | |
Cofooinoion 1:||:|

oolooiiliooloo

e |
l":chu- r'ath-u-

=

Issues
eNo Access to main memory
eProgrammer needs to explicitly reference L1 shared cache
eCan not synchronize multiprocessors
eCompute cores are not as smart as CPUs,
does not handle if statements well

g

Background

«Some graph G with vertices V and edges E
G= (V,E)

*For every pair of vertices u,v in V a shortest path from u
to v, where the weight of a path is the sum of he weights

of its edges

908

Adjacency Matrix

Undirected Graph {b) Adjacency Matrix Representation (b}

Quick Overview of Transitive Closure

The Transitive Closure of G is defined as the graph G* = (V, E*), where
E* ={(i,)) : there is a path from vertex i to vertex j in G}

-Introduction to Algorithms, T. Cormen

Simply Stated: The Transitive Closure of a graph is the list of
edges for any vertices that can reach each other

5
o
D
w

N~NoMpMoo~,PA~ADNE
W OoWUITo W wN K- ol

Warshall's algorithm: transitive
closure

> Computes the transitive closure of a relation
e (Alternatively: all paths in a directed graph)

« Example of transitive closure:1

Warshall's algorithm

- Main idea: a path exists between two vertices i, j, iff
there Is an edge from i to j; or
there is a path from i to) going through vertex 1; or
there is a path from i to j going through vertex 1 and/or 2;
] g
there is a path from i to j going through vertex 1, 2, ...
and/or k; or

there Is a path from i to j going through any of the other

vertices
g1

Warshall's algorithm

5) ldea: dynamic programming
- LetV={1, ..., n} and for k=n, V,={1, ..., k}

- For any pair of vertices I, jeV, identify all paths from i to)
whose intermediate vertices are all drawn from V,.: Pij'<={p1, P2,
.hIf pijk¢® then RX[i, j]=1

- For any pair of vertices I, J: R"[i, }], that is R"
- Starting with R°=A, the adjacency matrix, how to get R'1= ...

=Rkl Rk= | = R"
g

Warshall's algorithm

5) ldea: dynamic programming
> peP*: p is a path from i to j with all intermediate vertices
inV,
> If k 1s not on p, then p is also a path from 1 to) with all
intermediate vertices in V,,: peP;*1

Warshall's algorithm

5) ldea: dynamic programming
> peP*: p is a path from i to j with all intermediate vertices
inV,
- If kis on p, then we break down p into p, and p, where
— p, IS a path from i to k with all intermediate vertices in V,
— P, Is a path from k to j with all intermediate vertices in V, ,

Warshall's algorithm

» In the k' stage determine if a path exists between two vertices
I, j using just vertices among 1, ..., k

R&Di,j] (path using just 1, ..., k-1)
or

(R&-DJi,k] and RkD[k,j]) (path from i to k

and from k to |

using just 1, ..., k-1)

Quick Overview All-Pairs-Shortest-
Path

The All-Pairs Shortest-Path of G is defined for every pair of vertices u,v E V as the
shortest (least weight) path from u to v, where the weight of a path is the sum of the
weights of its constituent edges.

-Introduction to Algorithms, T. Cormen

Simply Stated: The All-Pairs-Shortest-Path of a graph is the most
optimal list of vertices connecting any two vertices that can reach
each other

1
Paths

1.5

N
!
=

N N oo Noo oY D
T
00O F ywwhiN

Uses for Transitive Closure and All-

Floyd-Warshall Algorithm

vold Floyd Warshall (Graph * W) {

int n = HumOfRows (W) ;

for(int k = 1; k < n; k++)
for(int i = 1; i < n; i++)
for{int j = 1; J < n; J++)

Wii, 3] = Wli, 3] = || (W[i, k] && W[k, 3]):

8 1|1

Pass B: Finds all connections
that are connected through &

908

Parallel Floyd-Warshall

void Floyd Warshall (Graph * W) |

int n = NumOfRows (W) ;
Each Processing
Element needs
global access , _
Parallel Floyd Warshall[i = 1:n, 7 = 1:n] (W :
to memory B -

for(int k= 1; k < n: k++) |

void Parallel Floyd Warshall (Graph * W) |

Wii, 3] = Wi, 3] | iwW[i, kK] && W[k, 3li1:

This can be an issue for GPUs

There’s a short coming to this algorithm though..

908

The Question

How do we calculate the transitive closure on the GPU to:

1. Take advantage of shared memory

wold Floyd Warshall (Graph * W) |

2. Accommodate data sizes
that do not fit In memory [EEaREREELRE

foriint k = 1; kK < n:; k++) {

Parallel Floyd Warshall[i = 1l:n, Jj = 1:n] (W):

Can we perform
pa r\tial processing void Parallel Floyd Warshall(Graph * W) {
O'F the data? W[i,3i] = W[i,3j] | (W[i, k] && W[k, 3]):

Block Processing of Floyd-Warshall

Multi-core Multi-core Multi-core Multi-core Multi-core Multi-core

]| (] 0]| [] [l][] 0] || [] [l
| [:E] z f a0l50

Shared Shared Shared Shared Shared Shared
Memory Memory Memory Memory Memory Memory

GPU

GPU
EE Organizational
structure for block
processing?

Data Matrix

Block Processing of Floyd-Warshall

0O N OO OB wWIDN|F-

Block Processing of Floyd-Warshall

wold Floyd Warshall (Graph ¥ W) {

int n = NumlfRowus (W) ;

foriint k = 1; k <« n; k++] |
foriint i . R T I 3
3 < on: J+H) d

W[i,3] = W[i,3] | (W[i, k] &«

Block Processing of Floyd-Warshall

K =4

[1,]]
(5,1)

00N O O lW DN |-

(8,1)
(5,4)

Wli,jl

For each pass, k, the cells retrieved must be processed to at least k-1

21

Wli,jl

(8,4)

(Wi, k] && WI[k,3jl)

[i,k]
(5,4)
(8,4)
(5,4)
(8,4)

[k,]]
(4,1)
(4,1)
(4,4)
(4,4)

908

Block Processing of Floyd-Warshall

Putting it all Together
Processing K = [1-4]

Pass 1:

[1-4], J = [1-4]

00N O O lW DN |-

Wli,jl = wli,j1 | (WI[i,k] && W[k,jl)

Block Processing of Floyd-Warshall

void Floyd Warshall (Graph * W)

W[i,3] = W[i,3] | (W[i,k] && W[k, 31):

1

J
k
N =8

Computing k = [5-8]

Block Processing of Floyd-Warshall

Putting it all Together
Processing K = [5-8]

Pass 1:

[5-8], J = [5-8]

Transitive Closure
Is complete for k = [1-8]

0N O O lW N

Wli,j1 = Wli,3] | (WI[i,k] && W[k, 31)

24

Increasing the Number of Blocks

= Primary blocks are along the diagonal

= Tertiary blocks are all remaining

blocks
HEEEENE

Pass 1

g

Increasing the Number of Blocks

........ = Primary blocks are along the diagonal
HEEEER

= Tertiary blocks are all remaining

blocks
HEEEEE

Pass 2

g

Increasing the Number of Blocks

.. = Primary blocks are along the diagonal
II.IIIII

= Tertiary blocks are all remaining

blocks
HE BEEEEE

Pass 3

g

Increasing the Number of Blocks

... = Primary blocks are along the diagonal
HEE EEEE
HEE EEEE

= Tertiary blocks are all remaining

blocks
HEE EEEE

Pass 4

g

Increasing the Number of Blocks

.... ... = Primary blocks are along the diagonal

N
==== === = Tertiary blocks are all remaining
blocks
HEEE EEE

Pass 5

g

Increasing the Number of Blocks

..... .. = Primary blocks are along the diagonal

..... .. = Tertiary blocks are all remaining
blocks
ENEEE NN

Pass 6

g

Increasing the Number of Blocks

= Primary blocks are along the diagonal

EEEEEE | N
. = Tertiary blocks are all remaining
blocks
ENEEEE =

Pass 7/

g

Increasing the Number of Blocks

....... = Primary blocks are along the diagonal

........ - glegéiséy blocks are all remaining

Pass 8

In Total:
N Passes

3 sub-passes per pass 9“08

Running it on the GPU

 Using CUDA

 Written by NVIDIA to access GPU as a parallel processor

Do not need to use graphics API

Grid Dimension ——»

« Memory Indexing

e CUDA Provides
Grid Dimension
Block Dimension
B|0Ck |d Thread Id

Thread Id Block Dimension {

Partial Memory Indexing

Memory Format for All-Pairs Solution

All-Pairs requires twice the memory footprint of Transitive
Closure

00N OO 1 A W N PR

/83 6

Shortest Path

g

Results

Synthetic Dataset Timings (APSP)

—o— Standard GPU
-o-SM-GPU

—
]
]
=
=]
()
7]
5]
=
=
Q
£
'—

| | | |
504 702 1098 1296 1494 1620 1710
Number of Vertices

SM cache efficient GPU implementation compared to
standard GPU implementation

Results

Synthetic Dataset Timings (APSP)

e CPU
—o— Standard GPU
-2 -SM-GPU

[>+]

—
(]
T
c
<]
2]
)
L
=
g
o
£
'_

p gepeg——— O I —— - e ——— = = Cc—=———== 4
550 660 550 660
Number of Vertices

SM cache efficient GPU implementation compared to 08
standard CPU implementation and cache-efficient 9
CPU implementation

Results

AS Relationship Dataset Timings (APSP)

w0
o

20}
o

-a-SM-GPU
~a- SPIRAL-tuned CPU

|
o

[o)]
o

4]
o

—
]
o
c
o
o
@
5]
£
=
o 40
£

=

w
o

o]
(=]

ik et L
. i, T, T e L T ot e P LT T T AT

1024
Number of Vetices

SM cache efficient GPU implementation compared to 08
best variant of Han et al.’s tuned code 9

Conclusion

*Advantages of Algorithm
* Relatively Easy to Implement
Cheap Hardware

Much Faster than standard CPU
version

Can work for any data size

Special thanks to NVIDIA for
supporting our research

39

X

NVIDIA.

908

«CompUte Driver Architecture
sExtension of C

sAutomatically creates thousands of threads to run on
a graphics card

*Used to create non-graphical applications
et i Integrated source

(foo.cu)

Allows user to design algorithms that will run in parallel CUdaCC

Easy to learn, extension of C EDG C/C++ frontend
Open64 Global Optimizer

Has CPU version, implemented by kicking off threads

GPU Assembly CPU Host Code

foo.s foo.cpp

Low level, C like language OCG gcc / cl
Requires understanding of GPU architecture to fully G80 SASS

exploit foo.sass 08
: 9

