
All-Pairs-Shortest-Paths for Large
Graphs on the GPU

Gary J Katz1,2, Joe Kider1

1University of Pennsylvania
2Lockheed Martin IS&GS

1

What Will We Cover?

• Quick overview of Transitive Closure and All-Pairs
Shortest Path

• Uses for Transitive Closure and All-Pairs

• GPUs, What are they and why do we care?

• The GPU problem with performing Transitive Closure
and All-Pairs….

• Solution, The Block Processing Method

• Memory formatting in global and shared memory

• Results

2

Previous Work

• “A Blocked All-Pairs Shortest-Paths Algorithm”

Venkataraman et al.

• “Parallel FPGA-based All-Pairs Shortest Path in a
Diverted Graph”

Bondhugula et al.

• “Accelerating large graph algorithms on the GPU using
CUDA”

Harish

3

NVIDIA GPU Architecture

Issues
•No Access to main memory
•Programmer needs to explicitly reference L1 shared cache
•Can not synchronize multiprocessors
•Compute cores are not as smart as CPUs,
does not handle if statements well

4

Background

•Some graph G with vertices V and edges E

•G= (V,E)

•For every pair of vertices u,v in V a shortest path from u
to v, where the weight of a path is the sum of he weights
of its edges

5

Adjacency Matrix

6

Quick Overview of Transitive Closure

The Transitive Closure of G is defined as the graph G* = (V, E*), where
E* = {(i,j) : there is a path from vertex i to vertex j in G}

-Introduction to Algorithms, T. Cormen

Simply Stated: The Transitive Closure of a graph is the list of
edges for any vertices that can reach each other

1

2

3

4

5

8

6

7

Edges
1, 5
2, 1
4, 2
4, 3
6, 3
8, 6

1

2

3

4

5

8

6

7

Edges
1, 5
2, 1
4, 2
4, 3
6, 3
8, 6
2, 5
8, 3
7, 6
7, 3

7 Design and Analysis of Algorithms - Chapter 8 7

WarshallWarshall’’ss algorithm: transitive algorithm: transitive
closureclosure

•• Computes the transitive closure of a relationComputes the transitive closure of a relation
•• (Alternatively: all paths in a directed graph)(Alternatively: all paths in a directed graph)

•• Example of transitive closure:1Example of transitive closure:1
3

42

1

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

0 0 1 0
1 1 11 1 1
0 0 0 0
11 1 1 11 1

3

42

1

8 Design and Analysis of Algorithms - Chapter 8 8

WarshallWarshall’’ss algorithmalgorithm

•• Main idea: a path exists between two vertices i, j, Main idea: a path exists between two vertices i, j, iffiff
••there is an edge from i to j; orthere is an edge from i to j; or
••there is a path from i to j going through vertex 1; orthere is a path from i to j going through vertex 1; or
••there is a path from i to j going through vertex 1 and/or 2; there is a path from i to j going through vertex 1 and/or 2;
oror
••……
••there is a path from i to j going through vertex 1, 2, there is a path from i to j going through vertex 1, 2, ……
and/or k; orand/or k; or
••......
••there is a path from i to j going through any of the other there is a path from i to j going through any of the other
verticesvertices

9 Design and Analysis of Algorithms - Chapter 8 9

Idea: dynamic programmingIdea: dynamic programming
•• Let V={1, Let V={1, ……, n} and for , n} and for kk≤≤nn, , VVkk={1, ={1, ……, k}, k}
•• For any pair of vertices i, For any pair of vertices i, jj∈∈VV, identify all paths from i to j , identify all paths from i to j

whose intermediate vertices are all drawn from whose intermediate vertices are all drawn from VVkk: : PPijij
kk={p1, p2, ={p1, p2,

……}, if }, if PPijij
kk≠∅≠∅ thenthen RRkk[i[i, j]=1, j]=1

•• For any pair of vertices i, j: For any pair of vertices i, j: RRnn[i[i, j], that is , j], that is RRnn

•• Starting with RStarting with R00=A, the adjacency matrix, how to get R=A, the adjacency matrix, how to get R1 1 ⇒⇒ ……
⇒⇒ RRkk--11 ⇒⇒ RRkk ⇒⇒ …… ⇒⇒ RRnn

i jP1

Vk

WarshallWarshall’’ss algorithmalgorithm

p2

10 Design and Analysis of Algorithms - Chapter 8 10

Idea: dynamic programmingIdea: dynamic programming
•• pp∈∈PPijij

kk:: p is a path from i to j with all intermediate vertices p is a path from i to j with all intermediate vertices
in in VVkk

•• If k is not on p, then p is also a path from i to j with all If k is not on p, then p is also a path from i to j with all
intermediate vertices in Vintermediate vertices in Vkk--11: p: p∈∈PPijij

kk--1 1

WarshallWarshall’’ss algorithmalgorithm

i jp
Vk-1

Vk
k

11 Design and Analysis of Algorithms - Chapter 8 11

Idea: dynamic programmingIdea: dynamic programming
•• pp∈∈PPijij

kk:: p is a path from i to j with all intermediate vertices p is a path from i to j with all intermediate vertices
in in VVkk

•• If k is on p, then we break down p into pIf k is on p, then we break down p into p11 and pand p22 wherewhere
–– pp11 is a path from i to k with all intermediate vertices in Vis a path from i to k with all intermediate vertices in Vkk--11

–– pp22 is a path from k to j with all intermediate vertices in Vis a path from k to j with all intermediate vertices in Vkk--11

WarshallWarshall’’ss algorithmalgorithm

i j

Vk-1

p

Vk
k

p1
p2

12 Design and Analysis of Algorithms - Chapter 8 12

WarshallWarshall’’ss algorithmalgorithm

•• In theIn the kkthth stage determine if a path exists between two vertices stage determine if a path exists between two vertices
i, j i, j using just vertices among 1, using just vertices among 1, ……, , k k

RR(k(k--1)1)[[i,ji,j] (path using just 1,] (path using just 1, ……, , kk--1)1)
RR(k)(k)[[i,ji,j] = or] = or

((RR(k(k--1)1)[[i,ki,k] and] and RR(k(k--1)1)[[k,jk,j]) (path from]) (path from i i to to kk
and fand from rom kk to to jj

using using just 1, just 1, ……, , kk--1)1)
i

j

k

kth stage

{

13

Quick Overview All-Pairs-Shortest-
Path

Simply Stated: The All‐Pairs‐Shortest‐Path of a graph is the most
optimal list of vertices connecting any two vertices that can reach
each other

1

2

3

4

5

8

6

7

Paths
1 → 5
2 → 1
4 → 2
4 → 3
6 → 3
8 → 6
2 → 1 → 5
8 → 6 → 3
7 → 8 → 6
7 → 8 → 6 → 3

The All-Pairs Shortest-Path of G is defined for every pair of vertices u,v E V as the
shortest (least weight) path from u to v, where the weight of a path is the sum of the
weights of its constituent edges.

-Introduction to Algorithms, T. Cormen

14

Uses for Transitive Closure and All-
Pairs

15

Floyd-Warshall Algorithm

11
1

11
11

1
111

11
11

87654321

8
7
6
5
4
3
2
1

Pass 1: Finds all connections
that are connected through 1

1

2

3

4

5

8

6

7

1

1

1

Pass 6: Finds all connections
that are connected through 6

1

Running Time = O(V3)

Pass 8: Finds all connections
that are connected through 8

16

Parallel Floyd-Warshall

There’s a short coming to this algorithm though…

Each Processing
Element needs
global access
to memory

This can be an issue for GPUs

17

The Question

How do we calculate the transitive closure on the GPU to:

1. Take advantage of shared memory

2. Accommodate data sizes
that do not fit in memory

Can we perform
partial processing

of the data?

Can we perform
partial processing

of the data?

18

Block Processing of Floyd-Warshall
Multi-core

Shared
Memory

Multi-core

Shared
Memory

Multi-core

Shared
Memory

GPU

Multi-core

Shared
Memory

Multi-core

Shared
Memory

Multi-core

Shared
Memory

GPU

Data Matrix

Organizational
structure for block

processing?

Organizational
structure for block

processing?

19

Block Processing of Floyd-Warshall

11
1

11
11

1
111

11
11

87654321

8
7
6
5
4
3
2
1

20

Block Processing of Floyd-Warshall

1

11

111

11

N = 4

4

3

2

1

4321

21

Block Processing of Floyd-Warshall

11
1

11
11

1
111

11
11

87654321

8
7
6
5
4
3
2
1

[i,j] [i,k] [k,j]
(5,1) ‐> (5,1) & (1,1)
(8,1) ‐> (8,1) & (1,1)
(5,4) ‐> (5,1) & (1,4)
(8,4) ‐> (8,1) & (1,4)

W[i,j] = W[i,j] | (W[i,k] && W[k,j])

K = 4

K = 1

[i,j] [i,k] [k,j]
(5,1) ‐> (5,4) & (4,1)
(8,1) ‐> (8,4) & (4,1)
(5,4) ‐> (5,4) & (4,4)
(8,4) ‐> (8,4) & (4,4)

For each pass, k, the cells retrieved must be processed to at least k‐1

22

Block Processing of Floyd-Warshall

11
1

11
11

1
111

11
11

87654321

8
7
6
5
4
3
2
1

W[i,j] = W[i,j] | (W[i,k] && W[k,j])

Putting it all Together
Processing K = [1‐4]

Pass 1:
i = [1‐4], j = [1‐4]

Pass 2:
i = [5‐8], j = [1‐4]
i = [1‐4], j = [5‐8]

Pass 3:
i = [5‐8], j = [5‐8]

23

Block Processing of Floyd-Warshall

11

1

11

11

8

7

6

5

N = 8

Computing k = [5‐8]

Range:
i = [5,8]
j = [5,8]
k = [5,8]

8765

24

Block Processing of Floyd-Warshall

11
1

11
11

1
111

11
11

87654321 Putting it all Together
Processing K = [5‐8]

Pass 1:
i = [5‐8], j = [5‐8]

Pass 2:
i = [5‐8], j = [1‐4]
i = [1‐4], j = [5‐8]

Pass 3:
i = [1‐4], j = [1‐4]

Transitive Closure
Is complete for k = [1‐8]

Transitive Closure
Is complete for k = [1‐8]

W[i,j] = W[i,j] | (W[i,k] && W[k,j])

8
7
6
5
4
3
2
1

25

Increasing the Number of Blocks

Pass 1

Primary blocks are along the diagonal

Secondary blocks are the rows and
columns of the primary block

Tertiary blocks are all remaining
blocks

26

Increasing the Number of Blocks

Pass 2

Primary blocks are along the diagonal

Secondary blocks are the rows and
columns of the primary block

Tertiary blocks are all remaining
blocks

27

Increasing the Number of Blocks

Pass 3

Primary blocks are along the diagonal

Secondary blocks are the rows and
columns of the primary block

Tertiary blocks are all remaining
blocks

28

Increasing the Number of Blocks

Pass 4

Primary blocks are along the diagonal

Secondary blocks are the rows and
columns of the primary block

Tertiary blocks are all remaining
blocks

29

Increasing the Number of Blocks

Pass 5

Primary blocks are along the diagonal

Secondary blocks are the rows and
columns of the primary block

Tertiary blocks are all remaining
blocks

30

Increasing the Number of Blocks

Pass 6

Primary blocks are along the diagonal

Secondary blocks are the rows and
columns of the primary block

Tertiary blocks are all remaining
blocks

31

Increasing the Number of Blocks

Pass 7

Primary blocks are along the diagonal

Secondary blocks are the rows and
columns of the primary block

Tertiary blocks are all remaining
blocks

32

Increasing the Number of Blocks

Pass 8

In Total:
N Passes
3 sub‐passes per pass

Primary blocks are along the diagonal

Secondary blocks are the rows and
columns of the primary block

Tertiary blocks are all remaining
blocks

33

Running it on the GPU

• Using CUDA

• Written by NVIDIA to access GPU as a parallel processor

• Do not need to use graphics API
Grid Dimension

{Block Dimension

• Memory Indexing

• CUDA Provides

• Grid Dimension

• Block Dimension

• Block Id

• Thread Id

Block Id

Thread Id

34

Partial Memory Indexing

SP2

SP3

0

1

N ‐ 1

N ‐ 1

N
‐

1

1

1SP1

35

Memory Format for All-Pairs Solution

All-Pairs requires twice the memory footprint of Transitive
Closure
Connecting

Node
Distance

0 1

0 1 1 2

0 1 0 1

0 1

8 3 8 2 0 1

6 2 0 1

2N

N

1

2

3

4

5

6

7
8

1 2 3 4 5 6 7 8

1

2

3

4

5

8

6

7

7 38 6

Shortest Path

36

Results

SM cache efficient GPU implementation compared to
standard GPU implementation

37

Results

SM cache efficient GPU implementation compared to
standard CPU implementation and cache-efficient

CPU implementation

38

Results

SM cache efficient GPU implementation compared to
best variant of Han et al.’s tuned code

39

Conclusion

•Advantages of Algorithm

• Relatively Easy to Implement

• Cheap Hardware

• Much Faster than standard CPU
version

• Can work for any data size

Special thanks to NVIDIA for
supporting our research

40

Backup

41

CUDA

•CompUte Driver Architecture

•Extension of C

•Automatically creates thousands of threads to run on
a graphics card

•Used to create non-graphical applications

•Pros:

• Allows user to design algorithms that will run in parallel

• Easy to learn, extension of C

• Has CPU version, implemented by kicking off threads

•Cons:

• Low level, C like language

• Requires understanding of GPU architecture to fully
exploit

gcc / cl

G80 SASS
foo.sass

OCG

cudacc
EDG C/C++ frontend

Open64 Global Optimizer
GPU Assembly

foo.s
CPU Host Code

foo.cpp

Integrated source
(foo.cu)

