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Abstract

Graphs are powerful data representations favored in many compu-
tational domains. Modern GPUs have recently shown promising re-
sults in accelerating computationally challenging graph problems
but their performance suffers heavily when the graph structure is
highly irregular, as most real-world graphs tend to be. In this study,
we first observe that the poor performance is caused by work imbal-
ance and is an artifact of a discrepancy between the GPU program-
ming model and the underlying GPU architecture. We then propose
a novel virtual warp-centric programming method that exposes the
traits of underlying GPU architectures to users. Our method signif-
icantly improves the performance of applications with heavily im-
balanced workloads, and enables trade-offs between workload im-
balance and ALU underutilization for fine-tuning the performance.

Our evaluation reveals that our method exhibits up to 9x
speedup over previous GPU algorithms and 12x over single thread
CPU execution on irregular graphs. When properly configured, it
also yields up to 30% improvement over previous GPU algorithms
on regular graphs. In addition to performance gains on graph algo-
rithms, our programming method achieves 1.3x to 15.1x speedup
on a set of GPU benchmark applications. Our study also confirms
that the performance gap between GPUs and other multi-threaded
CPU graph implementations is primarily due to the large difference
in memory bandwidth.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming — Parallel programming; D.3.3
[Programming Languages]: Language Constructs and Features —
Patterns

General Terms  Algorithms, Performance

Keywords Parallel graph algorithms, CUDA, GPGPU

1. Introduction

Graphs are widely-used data structures that describe a set of ob-
jects, referred to as nodes, and the connections between them,
called edges. Certain graph algorithms, such as breadth-first search,
minimum spanning tree, and shortest paths, serve as key compo-
nents to a large number of applications [4, 5, 15-17, 22, 25] and
have thus been heavily explored for potential improvement. Despite
the considerable research conducted on making these algorithms
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efficient, and the significant performance benefits they have reaped
due to ever-increasing computational power, processing large irreg-
ular graphs quickly and effectively remains an immense challenge
today. Unfortunately, many real-world applications involve large
irregular graphs. It is therefore important to fully exploit the fine-
grain parallelism in these algorithms, especially as parallel compu-
tation resources are abundant in modern CPUs and GPUs.

The Parallel Random Access Machine (PRAM) abstraction has
often been used to investigate theoretical parallel performance of
graph algorithms [18]. The PRAM abstraction assumes an infinite
number of processors and unit latency to shared memory from any
of the processors. Actual hardware approximations of PRAM, how-
ever, have been rare. Conventional CPUs lack in number of pro-
cessors, and clusters of commodity general-purpose processors are
poorly-suited as PRAM approximations due to their large inter-
node communication latencies. In addition, clusters which span
multiple address spaces impose the added difficulty of partitioning
the graphs. In the supercomputer domain, several accurate approx-
imations of the PRAM , such as the Cray XMT [13], have demon-
strated impressive performance executing sophisticated graph al-
gorithms [5, 17]. Unfortunately, such machines are prohibitively
costly for many organizations.

GPUs have recently become popular as general computing de-
vices due to their relatively low costs, massively parallel architec-
tures, and improving accessibility provided by programming envi-
ronments such as the Nvidia CUDA framework [23]. It has been
observed that GPU architectures closely resemble supercomputers,
as they implement the primary PRAM characteristic of utilizing a
very large number of hardware threads with uniform memory la-
tency. PRAM algorithms involving irregular graphs, however, fail
to perform well on GPUs [15, 16] due to the workload imbalance
between threads caused by the irregularity of the graph instance.

In this paper, we first observe that the significant performance
drop of GPU programs from irregular workloads is an artifact of
a discrepancy between the GPU hardware architecture and direct
application of PRAM-based algorithms (Section 2). We propose a
novel virtual warp-centric programming method that reduces the
inefficiency in an intuitive but effective way (Section 3). We apply
our programming method to graph algorithms, and show significant
speedup against previous GPU implementations as well as a multi-
threaded CPU implementation. We discuss why graph algorithms
can execute faster on GPUs than on multi-threaded CPUs. We also
demonstrate that our programming method can benefit other GPU
applications which suffer from irregular workloads (Section 4).

This work makes the following contributions:

* We present a novel virtual warp-centric programming method
which addresses the problem of workload imbalance, a general
issue in GPU programming. Using our method, we improve
upon previous implementations of GPU graph algorithms, by
several factors in the case of irregular graphs.
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Figure 1. GPU architecture and thread execution model in CUDA.

* Our method provides a generalized, systematic scheme of warp-
wise task allocation and improves the performance of GPU ap-
plications which feature heavy branch divergence or (unneces-
sary) scattering of memory accesses. Notably, it enables users
to easily make the necessary trade-off between SIMD under-
utilization and workload imbalance with a single parameter.
Our method boosts the performance of a set of benchmark ap-
plications suffering from these issues by 1.3x — 15.1x.

We provide a comparative analysis featuring a GPU and two
different CPUs that examines which architectural traits are crit-
ical to the performance of graph algorithms. In doing so, we
show that GPUs can outperform other architectures by provid-
ing sufficient random access memory bandwidth to exploit the
abundant parallelism in the algorithm.

2. Background
2.1 GPU Architectures and the CUDA Programming Model

In this section, we briefly review the microarchitecture of modern
graphics processors and the CUDA programming model approach
to using them. We then provide a sample graph algorithm and illus-
trate how the conventional CUDA programming model can result
in low performance despite abundant parallelism available in the
graph algorithm. In this paper, we focus on Nvidia graphics archi-
tectures and terminology specific to their products. The concepts
discussed here, however, are relatively general and apply to any
similar GPU architecture.

2.2 Graph Algorithms on GPU

Figure 1 depicts a simplified block diagram of a modern GPU archi-
tecture, only displaying modules related to general purpose com-
putation. As seen in the diagram, typical general-purpose graphics
processors consist of multiple identical instances of computation
units called Stream Multiprocessors (SM). An SM is the unit of
computation to which a group of threads, called thread blocks, are
assigned by the runtime for parallel execution. Each SM has one (or
more) unit to fetch instructions, multiple ALUs (i.e., stream proces-
sors or CUDA cores) for parallel execution, a shared memory ac-
cessible by all threads in the SM, and a large register file which
contains private register sets for each of the hardware threads.
Each thread of a thread block is processed on an ALU in the SM.
Since ALUs are grouped to share a single instruction unit, threads
mapped on these ALUs execute the same instruction each cycle, but
on different data. Each logical group of threads sharing instructions
is called a warp. ! Moreover, threads belonging to different warps
can execute different instructions on the same ALUs, but in a dif-
ferent time slot. In effect, ALUs are time-shared between warps.

! Note that the number of ALUs sharing an instruction unit (e.g. 8) can be
smaller than the warp size. In such cases, the ALUs are time-shared between
threads in a warp; this resembles vector processors whose vector length is
larger than the number of vector lanes.

The following summarizes the discussion above: from the ar-
chitectural standpoint, a group of threads in a warp performs as a
SIMD(Single Instruction Multiple Data) unit, each warp in a thread
block as a SMT(Simultaneous Multithreading) unit, and a thread
block as a unit of multiprocessing.

That said, modern GPU architectures relax SIMD constraints
by allowing threads in a given warp to execute different instruc-
tions. Since threads in a warp share an instruction unit, however,
these varying instructions cannot be executed concurrently and are
serialized in time, severely degrading performance. This advanced
feature, so called SIMT (Single Instruction Multiple Threads), pro-
vides increased programming flexibility by deviating from SIMD
at the cost of performance. Threads executing different instructions
in a warp are said to diverge; if-then-else statements and loop-
termination conditions are common sources of divergence.

Another characteristic of a graphics processor which greatly im-
pacts performance is its handling of different simultaneous mem-
ory requests from multiple threads in a warp. Depending on the
accessed addresses, the concurrent memory requests from a warp
can exhibit three possible behaviors:

1. Requests targeting the same address are merged to be one unless
they are atomic operations. In the case of write operations,
the value actually written to memory is nondeterministically
chosen from among merged requests.

2. Requests exhibiting spatial locality are maximally coalesced.
For example, accesses to addresses ¢ and ¢ + 1 are served by a
single memory fetch, as long as they are aligned.

3. All other memory requests (including atomic ones) are serial-
ized in a nondeterministic order.

This last behavior, often called the scattering access pattern,
greatly reduces memory throughput, since each memory request
utilizes only a few bytes from each memory fetch.

To best utilize the aforementioned graphics processors for gen-
eral purpose computation, the CUDA programming model was in-
troduced recently by Nvidia [23]. CUDA has gained great popu-
larity among developers, engineers, and scientists due to its easily
accessible compiler and the familiar C-like constructs of its API ex-
tension. It provided a method of programming a graphics processor
without thinking in the context of pixels or textures.

There is a direct mapping between CUDA’s thread model and
the PRAM abstraction; each thread is identified by its thread ID and
is assigned to a different job. External memory access takes a unit
amount of time in a massive threading environment, and no con-
cept of memory coherence is enforced among executing threads.
The CUDA programming model extends the PRAM abstraction to
include the notion of shared memory and thread blocks, a reflec-
tion of the underlying hardware architecture as shown in Figure 1.
All threads in a thread block can access the same shared memory,
which provides lower latency and higher bandwidth access than
global GPU memory but is limited in size. Threads in a thread block
may also communicate with each other via this shared memory.
This widely-used programming model efficiently maps computa-
tion kernels onto GPU hardware for numerous applications such as
matrix multiplication.

The PRAM-like CUDA’s thread model, however, exhibits cer-
tain discrepancies with the GPU microarchitecture that can signifi-
cantly degrade performance. Especially, it provides no explicit no-
tion of warps; they are transparent to the programmers due to the
SIMT ability of the processors to handle divergent threads. As a
result, applications written according to the PRAM paradigm will
likely suffer from unnecessary path divergence, particularly when
each rask assigned to a thread is completely independent from other
tasks. One example is parallel graph algorithms, where the irregular
nature of real-world graph instances often induce extreme branch



1 struct graph { 15 __kernel___

2 int nodes[N+1];//start index of edges from nth node 16 void baseline_bfs_kernel (int N, int curr, int =xlevels,
3 int edges[M];//destination node of mth edge 17 int *nodes, int xedges, boolx finished) {

4 int levels[N]; // will contatin BFS level of nth node int v = THREAD_ID;

5 }i 19 if (levels([v] == curr) {

6 20 // iterate over neighbors

7 wvoid bfs_main(graph* g, int root) { 21 int num_nbr = nodes[v+1l] - nodes[V];

8 initialize_levels(g—>levels, root); 22 intx nbrs = & edges[ nodes[v] ];

9 curr = 0; finished = false; 23 for(int i = 0; i < num_nbr; i++) {

10 do { 24 int w = nbrs[i];

11 finished = true; 25 if (levels([w] == INF) { // if not visited yet
12 launch_gpu_bfs_kernel (g, curr++, &finished); 26 +*finished = false;

13 } while (!finished); 27 levels[w] = curr + 1;

14 28 } 1))

Figure 2. The baseline GPU implementation of BFS algorithm.

divergence problems and scattering memory access patterns, as will
be explained in the next section. In Section 3, we introduce a new
generalized programming method that uses its awareness of the
warp concept to address this problem.

Figure 2 is an example of a graph algorithm written in CUDA
using the conventional PRAM-style programming from a previous
work [15]. 2 This algorithm performs a breadth-first search (BFS)
on the graph instance, starting from a given root node. More accu-
rately, it assigns a “BFS level” to every (connected) vertex in the
graph; the level represents the minimum number of hops to reach
this node from the root node.

Figure 2 also describes the graph data structure used in the
BFS, which is the same as the data structures used in other related
work [6, 15, 16]. This data structure consists of an array of nodes
and edges, where each element in the nodes array stores the start
index (in the edges array) of the edges outgoing from each node.
The edges array stores the destination nodes of each edge. The last
element of the nodes array serves as a marker to indicate the length
of the edges array. Figure 3.(a) visualizes the data structure. *

For this algorithm, the level of each node is set to oo, except for
the root which is set to zero. The kernel (code to be executed on the
GPU) is called multiple times until all reachable nodes are visited,
incrementing the current level by one upon each call. At each invo-
cation, each thread visits a node which has the same current_level
and marks all unvisited neighbors of the node with current_level+1.
Nodes may be marked multiple time within a kernel invocation,
since updates are not immediately visible to all threads. This does
not affect correctness, as all updates will use the same correct value.
This paper mainly focuses on the BFS algorithm, but our discussion
can be applied to many similar parallel graph algorithms that pro-
cess multiple nodes in parallel while exploring neighboring nodes
from each. We will discuss some of these algorithms in Section 4.3.

The baseline BFS implementation shown in Figure 2 suffers
a severe performance penalty when the graph is highly irregular,
i.e. when the distribution of degrees (number of edges per node)
is highly skewed. As we will show in Section 4, the baseline al-
gorithm yields only a 1.5x speedup over a single-threaded CPU
when the graph is very irregular. Performance degradation comes
from execution path divergence at lines 19, 23, and 25 in Fig-
ure 2. Specifically, a thread that processes a high-degree node will
iterate the loop at line 23 many more times than other threads,
stalling other threads in its warp. Additional performance degrada-
tion comes from non-coalesced memory operations at lines 21, 22,
25, and 27 since their addresses exhibit no spatial locality across
the threads. In addition, a repeated single-threaded access over con-

2The algorithm presented actually contains additional optimizations we
made to the original version [15]; we eliminated unnecessary memory
accesses and also eliminated an entire secondary kernel, which resulted in
more than 20% improvement. We use this optimized version as our baseline.

3 This data-structure is also known as compressed sparse row (CSR) in
sparse-matrix computation domain [9].
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Figure 3. (a) A visualization of the graph data structure used in the
BFS algorithm. (b) A degree distribution of a real-world graph instance
(LiveJournal), which we used for our evaluation in Section 4.

secutive memory addresses (i.e., at line 21) actually wastes memory
bandwidth by failing to exploit spatial locality in memory accesses.
Unfortunately, the nature of most real-world graph instances is
known to be irregular [24]. Figure 3.(b) displays the degree distri-
bution from one such example. Note that the plot is presented in
log-log format. The distribution shows that although the average
degree is small (about 17), there are many nodes which have de-
grees 10x ~ 100x (and some even 1000x) larger than the average.

3. Addressing Irregular Workloads using GPUs
3.1 Virtual Warp-centric Programming Method

We introduce a novel virtual warp-centric programming method
which explicitly exposes the underlying SIMD nature of the GPU
architecture to achieve better performance under irregular work-
loads.

Generalized warp-based task allocation

Instead of assigning a different task to each thread as is typical
in PRAM-style programming, our approach allocates a chunk of
tasks to each warp and executes distinct tasks as serial. We uti-
lize multiple threads in a warp for explicit SIMD operations only,
thereby preventing branch-divergence altogether. More specifi-
cally, the kernel in our programming model alternates between two
phases: the SISD (Single Instruction Single Data) phase, which is
the default serial execution mode, and the SIMD phase, the parallel
execution mode. When the kernel is in the SISD phase, only a sin-
gle stream of instructions is executed by each warp. In this phase,
each warp is identified by a unique warp ID and works on an inde-
pendent set of tasks. The degree of parallelism is thus maintained
by utilizing multiple warps. In contrast, the SIMD phase begins
by entering a special function explicitly invoked by the user. Once
in the SIMD phase, each thread in the warp follows the same in-
struction sequence, but on different data based on its warp offset,
or the lane ID within the given SIMD width. Unlike the classi-
cal (CPU-based) SIMD programming model, however, our SIMD
threads are allowed more flexibility in executing instructions; they



29 template<int W_Sz> __device_
30 wvoid memcpy_SIMD
31 (int W_OFF, int cnt, intx dest, int* src) {

32 for (int IDX = W_OFF; IDX < cnt; IDX += W_SZ)
33 dest [IDX] = src[IDX];

34 __threadfence_block(); }

35

36 template<int W_SZzZ> _ device_
37 wvoid expand_bfs_SIMD
38 (int W_SZ, int W_OFF, int cnt, intx edges,

39 int+ levels, int curr, boolx finished) {
40 for (int IDX = W_OFF; IDX < cnt; IDX += W_SZ) ({
41 int v = edges[IDX];

42 if (levels[v] == INF) {

43 levels[v] = curr + 1;

44 xfinished = false;

45 b}

46 __threadfence_block();}

47

48 struct warpmem_t {

49 int levels[CHUNK_SZ];

50 int nodes[CHUNK_SZ + 1];

51 int scratch;

52 };

53 template<int W_SZ> __kernel_

54 void warp_bfs_kernel

55 (int N, int curr, int =xlevels,

56 int xnodes, int *edges, boolx finished) {
57 int W_OFF = THREAD_ID % W_SZ;

58 int W_ID = THREAD_ID / W_S%;

59 int NUM_WARPS = NUM_THREADS / W_SZ;

60 extern __ shared__ warp_mem_t SMEM[];

61 warpmem_t+ MY = SMEM + (LOCAL_THREAD_ID / W_SZ);
62

63 // copy my work to local

64 int v_ = W_ID * CHUNK_SZ;

65 memcpy_SIMD<W_SZ> (W_OFF, CHUNK_SZ,

66 MY->levels, &levels[v_]);

67 memcpy_SIMD<W_SZ> (W_OFF, CHUNK_SZ+1,

68 MY->nodes, &nodes[v_]);

69

70 // iterate over my work

71 for(int v = 0; v < CHUNK_SZ; v++) {

72 if (MY->levels[v] == curr) {

73 int num_nbr = MY->nodes[v+1l] - MY->nodes([V];
74 int* nbrs = &edges[ MY->nodes[v] ];
75 expand_bfs_SIMD<W_SZ> (W_OFF, num_nbr,
76 nbrs, levels, curr, finished)

77y )

Figure 4. BFS kernel written in virtual warp-centric programming model

can perform scattering/gathering memory accesses, execute condi-
tional operations independently, and process dynamic data width.
This is all done while taking advantage of the underlying hardware
SIMT feature.

The proposed programming method has several advantages:

1. Unless explicitly intended by the user, this approach never en-
counters execution-path divergence issues. Intra-warp workload
imbalance is therefore never unaware.

2. Memory access patterns can be more coalesced than the con-
ventional thread-level task allocation in applications where con-
current memory accesses within a task exhibit much higher spa-
tial locality than across different tasks.

3. Many developers are already familiar with our approach, since
it resembles, in many ways, the traditional SIMD programming
model for CPU architectures. However, the proposed approach
is even simpler and more powerful than SIMD programming
for CPU, since CUDA allows users to describe custom SIMD
operations with C-like syntax.

4. This method allows for each task to allocate a substantial
amount of privately-partitioned shared memory per task. This
is because there are fewer warps than threads in a thread block.

In order to generally apply our programming method within
current GPU hardware and compiler environments, we take simple
means of replicated computation: during the SISD phase, every
thread in a warp executes exactly the same instruction on exactly
the same data. We enforce this by assigning the same warp ID to all
threads in a warp. Note that this does not waste memory bandwidth
since accesses from the same warp to the same destination address
are merged into one by the underlying hardware.

Virtual Warp Size

Although naive warp-granular task allocation provides several
merits aforementioned, it suffers from two potential drawbacks,
where in both cases, unused ALUs within a warp limit the parallel
performance of kernel execution:

1. If the native SIMD width of the user application is small, the
underlying hardware will be under-utilized.

2. The ratio of the SIMD phase duration to the SISD phase dura-
tion imposes an Amdahl’s limit on performance.

We address these issues by logically partitioning a warp into
multiple virtual warps. Specifically, instead of setting the warp size
parameter value to be the actual physical warp size of 32, we use
a divisor (i.e. 4, 8, and 16). Multiple virtual warps are then co-
located in one physical warp, with each virtual warp processing
a different task. Note that all previous assumptions on a warp’s
execution behavior — synchronized execution and merged memory
accesses for the threads inside a warp — are still valid within virtual
warps. Thus, the parallelism of the SISD phase increases as a result
of having multiple virtual warps for each physical warp, and the
ALU utilization improves as well due to the logically narrower
SIMD width.

Using virtual warps leads to the possibility of execution path
divergence among different virtual warps, which in turn serializes
different instruction streams among the warps. The degree of diver-
gence among virtual warps, however, is most likely much less than
among threads in a conventional PRAM warp. In essence, the vir-
tual warp scheme can be viewed as a trade-off between execution-
path divergence and ALU underutilization by varying a single pa-
rameter, the virtual warp size.

BFS in the Virtual Warp-centric Programming Method

Figure 4 displays the implementation of the BFS algorithm
using our virtual warp-centric method. While the underlying BFS
algorithm is fundamentally identical to the baseline implementation
in Figure 2, the new implementation divides into SISD and SIMD
phases. The main kernel (lines 54-77) executes the same instruction
and data pattern for every thread in the warp, thus operating in the
SISD phase. Functions in lines 30-46 operate in the SIMD phase,
since distinct partitions of data are processed. Each warp also uses a
private partition of shared memory; the data structure in lines 48-51
illustrates the layout of each private partition.

Lines 57-61 of the main kernel define several utility variables.
The virtual-warp size (w_sz) is given as a template parameter; the
warp ID (w_1p) of the current warp and the warp offset (w_orr) of
each thread is computed using the warp size. Warp-private memory
space is allocated by setting the pointer (my) to the appropriate
location in the shared memory space.

The virtual warp-centric implementation copies its portion of
work to the private memory space (lines 64-68) before executing
the main loop. As the function name implies, the memory copy
operation is performed in a SIMD manner. After the memory copy
operation finishes, the kernel executes the iterative BFS algorithm



78 BEGIN_SIMD_DEF (memcpy, intx dest, intx src)

79 { dest[IDX] = src[IDX]; } END_SIMD_DEF
80

81 BEGIN_SIMD_DEF (expand_bfs, intx edges,
82 intx level, int curr, boolxfinished)
83 { int v = edges[IDX];

84 if (level[v] == INF) {

85 level([v] = curr + 1;

86 xfinished = false;

87 '} } END_SIMD_DEF

88

89 BEGIN_WARP_KERNEL (warp_bfs_kernel,

90 int N, int curr, int xlevel,

91 int xnodes, int x edges, boolx finished) {

92 USE_PRIV_MEM (warp_mem_t) ;

93 // copy my_work

94 int v_ = N / NUM_WARPS * W_ID;

95 DO_SIMD (mempcy, CHUNK_SZ, MY->levels, &levellv_]);
96 DO_SIMD (mempcy, CHUNK_SZ+1, MY->nodes, &nodes[v_]);
97

98 // iterate over my_work

99 for(int v = 0; v < CHUNK_SZ; v++) {

100 if (level[v] == curr) ({

101 int num_nbr = MY->nodes[v+1l] - MY->nodes([Vv];
102 intx nbrs = gedges[ MY->nodes[v] 1;

103 DO_SIMD (expand_bfs, num_nbr,

104 nbrs, begin, level, curr, finished)

105 '} } } END_WARP_KERNEL

Figure 5. Same code as Figure 4 using macro-expansion. Type definition of warp_mem_t is same as before and omitted.

sequentially (lines 71-77), with the exception of explicitly-called
SIMD functions. The expansion of BFS neighbors (line 75) is an
explicit SIMD function call to the one defined at line 37, whose
functionality is equivalent to lines 23-27 of the baseline algorithm
Figure 2.

For a detailed explanation of how SIMD functions are imple-
mented, consider the simple memcpy function in line 30. Each thread
in a warp enters the function with a distinct warp offset (w_orr),
which leads to a different range of indices (1px) of the data to be
copied. The SIMT feature of CUDA enables the width of the SIMD
operation to be determined dynamically. Although the SIMT fea-
ture guarantees synchronous execution of all threads at the end of
the memcpy function, __threadfence_block () at line 34 is still re-
quired for intra-warp visibility of any pending writes before re-
turning to SISD phase.4 The second SIMD function, expand_bfs
(line 37), is structured similarly to memcpy. The if-then-else state-
ment in line 42 is an example of a conditional SIMD operation,
automatically handled by SIMT hardware.

Using the virtual warp-centric method, the BFS code exhibits no
execution-path divergence other than intended dynamic widths and
conditional operations, as shown in Figure 4. Moreover, memory
accesses are coalesced except the final scattering at line 42 and 43,
which are inherent to the nature of the BFS algorithm.

Abstracting the Virtual Warp-centric Programming Method

As evident in the BFS example, the virtual warp-centric pro-
gramming method is intuitive enough to be manually applied by
GPU programmers. Closer inspection of the code in Figure 4, how-
ever, reveals some structural repetition in patterns that serve the
programming method itself, rather than the user algorithm. Thus,
providing an appropriate abstraction for the model can further re-
duce programmer effort as well as potential for error in the struc-
tural part of the program.

To this end, we introduce a small set of syntactic constructs in-
tended to facilitate use of the programming model. Figure 5 illus-
trates how these constructs can simplify our previous warp-centric
BFS implementation. For example, the SIMD function memcpy (line
30-33) in Figure 4 can be concisely expressed as line 78-79 in Fig-
ure 5. The constructs BEGIN_sIMp_DEF and END_SIMD_DEF automat-
ically generate the function definition and outer-loop for work dis-
tribution. The user invokes the SIMD function using the po_siMp
construct (line 95), where the function name, dynamic width, and
other arguments are specified. Similarly, the BEGIN_WARP_KERNEL
and END_WARP_KERNEL constructs indicate and generate the begin-
ning and end of a warp-centric kernel, while the use_pr1v_mEM con-
struct allocates a private partition of shared memory.

4 Although intra-warp visibility is attainable without the fence in some
GPU generations (e.g. GT200), it is not guaranteed in general by the
CUDA specification. Also note that the fence guarantees threadblock-wide
visibility, which is larger than required; however, the performance impact
of the overhead is negligible.

The current set of constructs are implemented as C-macros,
which is adequate to demonstrate how these constructs can gen-
erate desired routines and simplify programming. However, future
compiler support of such virtual warp-centric constructs, or simi-
lar, could provide further benefits. For example, the compiler may
choose to generate codes for SISD regions such that only a sin-
gle thread in a warp is actually activated, rather than replicating
computation. This eliminates unnecessary allocation of duplicated
registers which are used only in the SISD phase and can also save
power wasted by replicated computation.

3.2 Other Techniques

In this subsection, we discuss two other general techniques for
addressing work imbalance. These techniques do not necessarily
rely on the new programming model but can accompany it.

Deferring Outliers

The first technique is deferring execution of exceptionally large-
sized tasks, which we term ’outliers’. Since there are a limited
number of such tasks which induce load imbalance, we identify
these tasks during main-kernel execution and defer their processing
by placing them in a globally-shared queue, rather than processing
them on-line. In subsequent kernel calls, each of the deferred tasks
is executed individually, with its work parallelized across multiple
threads. Figure 6 illustrates this idea.

In the BFS algorithm, the amount of work is proportional to the
degree of each node, which is obtainable in 0(1) time given our data
structure. For this technique, therefore, we simply defer processing
of any node having degree greater than a predetermined threshold.
Results in Section 4 explore the effects on performance when one
varies this threshold.

This optimization technique requires the implementation of a
global queue, a challenging task on a GPU in general. It is rela-
tively simple, however, to implement a queue that always grows
(or shrinks) during a kernel’s execution. The code below exempli-
fies such an implementation using a single atomic operation:

AddQueue (intx g_idx, type_t+* g, type_t item) {
int old_idx = AtomicAdd(qg_idx, 1);
glold_idx] = item; }

In our case, the overhead of the atomic operations is negligible
compared to overall execution time, since queuing of deferred out-
liers is rare. However, this technique presents additional overhead
via subsequent kernel invocations to process the deferred outliers.

Dynamic Workload Distribution

The virtual warp-centric programming method addresses the
problem of workload imbalance inside a warp. However, there still
exists the possibility of workload imbalance between warps: a sin-
gle warp processing an exceptionally large task can stall the entire
thread block (mapped to an SM), wasting computational resources.
To solve this problem, we apply a dynamic workload distribution
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Figure 6. Visualization of deferring outliers: Each solid bar in the figure
represents the amount of workload of each task. Tasks that have particularly
large workload are deferred and later processed individually in parallel.

technique to our GPU graph algorithm. First, we instantiate only as
many warps as there are physical resources. Second, each warp dy-
namically fetches a chunk of work from a shared work queue and
processes it. All warps repeat this process until the work queue is
emptied.

Note that this dynamic workload distribution technique is com-
pletely ineffective in the conventional PRAM-style programming;
each thread in a warp cannot fetch another task until its fellow
threads in the warp complete theirs. The same global queue imple-
mentation used for the deferring of outliers technique can be used
for the work queue, since it only shrinks during a kernel execution.
However, atomic operations during SISD phase should be handled
with care as in following example:

if (WARP_OFFSET==0) {

MY->scratch = AtomicAdd(work_qg, CHUNK_SZ);
__threadfence_block();}

v_ = MY->scratch;

That is, since the GPU hardware does not merge, but serializes,
atomic accesses that have the same destination address, only one
thread should execute it for semantic correctness. The result of the
single threaded atomic instruction can be propagated to all the other
threads in the warp by means of shared memory without explicit
synchronization.

For task parallelization, there is a well-known trade-off between
static and dynamic workload distribution: Static distribution is vul-
nerable to load imbalance for tasks with varying workload, while
dynamic distribution often imposes considerable overhead. In our
case, the overhead is the atomic mutation of the work queue. The
better scheme thus depends upon the size of the work chunk. Re-
sults in Section 4 will study this effect.

4. Experimental Results

In this section, we present experimental results in three categories.
First, we explore the effectiveness of the methods we designed to
address workload imbalance. Second, we study how different traits
of various processor architectures affect the performance of graph
algorithms. Third, we apply the virtual warp-centric programming
method to other types of GPU applications, including two other
graph algorithms.

4.1 Effect of Optimization Techniques

In the previous section, we introduced three techniques to avoid
execution-path divergence and improve performance. In this sec-
tion, we evaluate our proposed schemes by applying them in vari-
ous combinations to the BFS algorithm with graph instances from
different sources. Table 1 summarizes the experimental environ-
ments used for evaluation. For all results, speedup is measured
against single-threaded execution time on the Out-of-Order (OOO)
CPU machine described in the table, unless stated otherwise. The
single-threaded execution used the same algorithm as the baseline
in Figure 2, as it has been shown to be faster than other popular li-
brary such as Boost [16]. CPU and GPU BFS codes were compiled
using gcc with the *-O3 -m32’ flags and nvce with the ’-O3’ flag,
respectively.

Table 2 summarizes the properties of the graph instances used
in the experiment. Of the four used, two of them are synthetically-
generated graphs: RMAT and Random. RMAT [11] generates a
scale-free graph which follows a power law degree distribution like
many real world graphs [24], such as the world-wide web or a social
networks. Random is a uniformly distributed graph instance created
by randomly connecting m pairs of nodes out of a total n nodes. The
average degree is set to 12 for both instances. Our experiment also
includes two real world graph instances from a public large dataset
collection [1]. LiveJournal exhibits a very irregular structure; its
degree distribution was the example given in Figure 3.(b). Patents
is relatively regular and has a smaller average degree.

Figure 7 illustrates the effectiveness of our proposed methods.
Graph (a) compares five different configurations used on the GPU.
The leftmost bar represents the speedup of the baseline GPU im-
plementation (Figure 2). As evident in the graph, the performance
of the baseline algorithm is particularly poor for irregular graph in-
stances (RMAT, LiveJournal) due to the problem of workload im-
balance. The next striped bar shows the performance when the de-
ferring method is applied to the baseline. Deferring outliers pro-
duces a 1.9x improvement over the baseline implementation for
RMAT, which features the worst workload imbalance, but does not
provide significant speedup for any other graph instance.

The center solid bar represents the speedup of the BFS im-
plementation using our virtual warp-centric programming method
with virtual warp-size equal to physical warp-size (i.e. 32). RMAT
and LiveJournal, in particular, exhibit dramatic performance im-
provements, as their workload imbalance is well-handled by this
method The regular graph instance of Random, however, gained
only minor improvements. This small speedup came from slightly
better-coalesced memory access patterns in the warp-centric method
(Section 3.1). For Patents, the warp-centric method resulted in per-
formance degradation. This is not only because Patents is quite reg-
ular, but its average degree is small (~ 6). The naive warp-centric
method therefore suffered from underutilization of warp resources,
since the average SIMD width is determined by the average degree.
A more detailed discussion follows shortly.

The two rightmost bars in Figure 7.(a) display the performance
of the deferred outlier and dynamic workload distribution methods,
when combined with the warp-centric method. Deferring outliers
yields only a marginal performance gain since the warp-centric
programming method already handles load imbalance reasonably
well. In contrast, dynamic workload distribution allows for further
speedup in severely imbalanced graphs such as RMAT. If the work-
load is evenly distributed, however, this method yields more over-
head than benefit, as shown in the Random and Patent instances.

We now explore the trade-off between execution path diver-
gence and ALU underutilization, by varying the virtual warp size.
The result is shown in Figure 7.(b). The figure depicts the differ-
ent optimal trade-off points for the graph instances. The regular
graph instances (Random and Patents) achieve maximum average
utilization of the SIMD lanes when the virtual warp size is set to
approximately the average degree value. For RMAT, whose degree
distribution is severely skewed, the best performance was achieved
when avoiding execution path divergence as much as possible; a
virtual warp size of 32 yielded optimal results. These results sup-
port the argument of having an intelligent runtime system that dy-
namically adjusts the virtual warp size according to the nature of
the graph instance. With a properly selected virtual warp size, the
virtual warp-centric method outperforms the baseline algorithm in
all graph instances.

Figure 8 summarizes a sensitivity study of how performance
was affected by the chosen parameter values and graph instance
sizes. Figure 8.(a) shows the effect of changing the threshold value
in the deferring outlier method; this value dictates the minimum



Architecture  Detailed SMP Cores SMT Lastlevel  Clock Memory size,
Name Name sockets perchip percore cachesize freq type
000 CPU Intel Xeon E5345 2 4 1 8 MB 2.3 Ghz 32GB, FB-DIMM DDR2
GPU Nvidia Tesla GTX260 1 24 16 - 1.2Ghz 1GB, GDDR3
SMT CPU Sun UltraSPARC T2+ 4 8 8 4 MB 1.6 Ghz  128GB, FB-DIMM DDR2
GPU2 Nvidia Tesla GTX275 1 30 16 - 1.4 Ghz 1GB, GDDR3
Table 1. Specifications of machines used in the experiments. GPU2 is only used to create Figure 10.
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Name | Source Nodes Edges Shape
RMAT | generate [7, 11] 4% 108 4.8 %107 irregular
Random | generate [7] 4 %1068 4.8 % 107 regular
LiveJournal | Real-world data [1] 4,308,451 68,993,773  irregular
Patents | Real-world data [1] 1,765,311 10,564,104  regular

Table 2. Characteristics of graph instances used in the experi-
ments.

size of workload to be deferred. When applied to the baseline im-
plementation (dashed line), the graphs shows that the resulting ex-
ecution time is highly sensitive to the threshold value. Large val-
ues cause workload imbalance to persist; small ones result in too
many additional kernel invocations for the deferred work. When
combined with the virtual warp-centric method, however, the exe-
cution time is insensitive to the threshold value since our method
adequately handles load imbalance already.

Figure 8.(b) shows the impact of workload chunk-size for the
dynamic workload distribution method. This is a classical trade-
off where small chunk-sizes increase the queue overhead, while
large chunk-sizes tend to yield workload imbalance. Yet, the overall
performance remains relatively insensitive to the chunk-size for a
wide range (256 - 2048).

Finally, the plots in Figure 8.(c) and (d) show the scalability
of each algorithm, as determined by the input size. Figure 8.(c)
sweeps the number of nodes in the RMAT graph instance while
fixing the average degree to 12. The relative speedup for the small
graph instances in this GPU-based algorithm is low, because the
CPU performed well due to increased cache hit rates. The plot
clearly shows, however, that virtual warp-centric implementations
provide superior speedup as the graph instances become large.

Figure 8.(d) varies the number of edges while keeping the num-
ber of nodes constant (4 million). This affects RMAT graph genera-
tion in two ways: (i) the average degree changes, and (ii) the graph
instance becomes more skewed as the average degree increases.
As a result, Figure 8.(d) confirms that when the average degree is
small (especially when smaller than the warp size), the naive warp-
centric implementations suffer from underutilization in the SIMD
operations. In such cases, using a smaller virtual warp size (i.e.
warp16) provides meaningful benefit. When the average degree is
large, however, the load imbalance becomes more severe due to the
increased level of degree skew; dynamic load balancing provides a
larger benefit for such cases.
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4.2 Study of Architectural Effects

As seen in the previous subsection, the GPU implementations of
our graph algorithm significantly outperform their CPU counter-
parts. We now explore which GPU architectural traits bring about
this result and how.

In general, there are a few key architectural characteristics
which account for whether performance improvements are deliv-
ered by GPU execution for a user application:

(1) GPU architectures enable massively parallel execution by pro-
viding many physical cores (SMs) and many ALUs per core.

(2) GPUs use a large number of warps to hide memory latency.

(3) GPU execution takes advantage of the directly-attached GDDR3
memory, which has higher bandwidth and lower latency than
FB-DIMM based CPU main memory.

(4) GPUs do not spend bandwidth on coherence traffic.

To explore the effect of these traits on the graph algorithms, we
first compared GPU performance to that of other multi-threaded
processor architectures; we used the same BFS algorithm > on all
the machines listed in Table 1 and measured performance.

Figure 9.(a) compares the speedup result on the OOO machine
with the GPU results from Figure 7. The four leftmost bars repre-
sent the OO0 machine execution with varying number of threads.
The OOO execution results exhibit similar speedup values for every
graph instance, since execution path divergence is not an issue for
CPUs. However, the speedup was limited to around 2x with eight
cores. Recall that there is no parallel overhead such as locks or
atomic operations in our algorithm. Thus, the low speedup of OOO
execution is due solely to a lack of memory bandwidth required to
service the repeated last level cache misses caused by the random
access memory pattern of the algorithm. The OOO performance
for the Patents instance was particularly better than others, due to
relatively higher cache hit rates resulting from the small graph size.

Figure 9.(b) shows the result of the same experiment on the
SMT machine. The measured single thread performance (T1) was
very poor compared to OOO execution, although the clock fre-
quency of the SMT machine was more than half that of the OOO
machine. This implies that the out-of-order execution successfully
exploited the high degree of instruction level parallelism within the
most time-consuming loop (line 23-27 in Figure 2). Once an ade-
quate number of threads are used, however, the SMT machine soon
outperforms the OOO machine due to higher throughput as shown
in the 64-thread (T64) results. More interestingly, utilizing more
sockets of the SMT machine (two sockets for T128 and four for

5 We also tried another multi-threaded CPU implementation [6] that uses
spinlocks and private temporary work queues. However, the presented al-
gorithm showed better performance in every configuration.

T256) does not necessarily result in better performance. This in-
dicates that communication cost across chip boundaries, including
bandwidth used for coherence traffic, is the major limiting factor
for scalability on this machine.

Next, we explore the effect of bandwidth utilization and latency
hiding in GPUs. Our experiment involves varying the number of
warps and SMs when executing the dynamic load-balancing ver-
sion of the warp-centric BFS. The result is shown in the two plots of
Figure 10.(a); both plots are aligned to the number of active warps.
The upper plot explores how latency hiding affects speedup by set-
ting the number of SMs to the maximum (24) and changing the
number of warps per SM. The performance gain from adding more
than eight warps per SM is marginal, which indicates that perfor-
mance is limited by the memory bandwidth after that point. The
lower plot varies the number of SMs while fixing the number of
warps per SM (to 16). Since each SM has limited internal mem-
ory bandwidth, more SMs performed better for the same number of
warps.

Figure 10.(b) repeats the same experiment on a different GPU
machine (GPU2 in Table 1). The plots also suggest that the per-
formance is limited by the bandwidth, since GPU2, whose mem-
ory bandwidth is ~10% larger than GPU1 [2], resulted in about
10% performance improvement. We also measured the memory
bandwidth of random read accesses on these machines (omitted for
brevity) and confirmed that the GPU has 3x ~ 16x larger bandwidth
than OOO and SMT CPUgs, depending on the cache hit ratio.

To summarize, the graph algorithm has abundant parallelism,
primarily in memory operations rather than computation; this par-
allelism can be exploited by using deep OOO execution, SMT hard-
ware, or scattering SIMD operations as well as by using multiple
cores and chips. Regardless of the hardware mechanism chosen,
graph algorithms such as BFS are bound by memory bandwidth and
require as much as possible in order to realize peak performance.
The GPU had the largest memory bandwidth of all the machines
we tested and therefore showed the best performance.

One common criticism of graph algorithm computation on
GPUs is lack of support for very large graphs that do not fit in
the GPU’s limited memory. It would therefore be interesting to
consider how the GPU would perform if the directly attached
GDDR memory is replaced by FB-DIMM memory. This would
allow GPUs to accommodate larger graph instances at the expense
of a reduction in memory bandwidth. In such a case, the GPU per-
formance should decrease, as per the reduced memory bandwidth,
although the non-coherence and massive parallelism of the GPU
enables it to utilize its bandwidth more efficiently. The merits of
the CPU’s cache will also diminish as data size grows.

Nevertheless, many real-world graphs (e.g. all instances in [1,
6]) still fit in GPU memory, and many interesting queries on these
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Figure 10. Effect of number of warps and number of SMs for GPU
execution (Warp+Dynamic) with RMAT input.

graphs require a considerable amount of time, e.g calculating the
average BFS number of all nodes from all other nodes requires
O(N) repeated execution of single BFS number algorithm. Thus,
fast GPU execution is practically very beneficial for many real-
world problems.

4.3 Other Applications

In this subsection, we demonstrate that the virtual warp-centric
programming method can be applied to other graph algorithms and
provides the same merits as in the BFS algorithm. In addition, we
apply our method to GPU applications other than graph algorithms
to verify the benefits claimed in Section 3.1.

Figure 4.3 presents the speedup of our virtual warp-centric im-
plementations. Note that in these graphs the baseline is the orig-
inal PRAM-style GPU implementation, rather than any CPU ver-
sion; our interest lies only in the effectiveness of our programming
method rather than in the applications themselves.

The first two applications, SSSP (Single Source Shortest Path)
and STCON(S-T Connectivity), are two other CUDA graph al-
gorithms from [15, 16]. Although the detailed implementation of
these algorithm differ from each other, they share a common al-
gorithmic pattern as in the BFS algorithm to achieve parallelism:
each node is visited in parallel to explore its neighbors. Thus anal-
ysis similar to the ones in the previous subsections can be made
on these results. We used the RMAT graph instance as the input of
these algorithms.

The next four applications are selective GPU benchmarks from
the literature [8, 12, 20] that have some degree of branch path di-
vergence and scattering memory access issues; however, they do
not exhibit workload imbalance as severe as in the graph algo-
rithms. Merge sort [20] recursively merges pairs of sorted sublists
in parallel. After each merge operation, the size of sorted sublists
doubles and the number of sublist halves. Thus, the application
has no workload imbalance (except possibly at the end). However,
memory divergence becomes an issue since each thread works on
different sublists that are spaced apart. The warp-centric execu-
tion method eliminates memory divergence by assigning a pair of
sublists to each warp. LU [20] implements a naive version of the
LU decomposition. In this implementation, each thread computes
one element in a KxK sub-matrix; thus, threads that handle bound-
ary elements incur intra-warp memory divergence. Our program-
ming method avoids this divergence by assigning a row partition to
each warp. Backprop [12], a neural network application, performs
vector-matrix multiplication in its first kernel. The original GPU
implementation uses the entire thread block to compute the partial
sum for a sub-matrix which requires column-wise reduction and
synchronization. The warp centric method lets each warp indepen-
dently accumulate partial sums from a chunk of rows, which obvi-
ates the synchronization and reduction. NN [8], another neural net-
work application, processes separate data streams in each thread.
Although the data streams are consecutive in memory, the start ad-
dresses are virtually randomized, causing memory divergence. The

warp-centric approach assigns a data stream to each warp, using the
threads within a warp to fetch data in parallel.

Finally, Kmeans [12] represents applications where the conven-
tional PRAM-style programming performs well. This application
contains very little execution path divergence, and every memory
access is well aligned across threads in a warp. Thus, the virtual
warp-centric programming method yields only pure overhead: the
SISD phase, SIMD width underutilization, as well as increased in-
struction count. This resulted in 40% overhead with warp-size 32,
which has the worst resource utilization. Since our programming
method does not require any change to the underlying hardware or
compiler system, the user can simply choose not to use our method
on non-suitable applications: applications without branch or mem-
ory divergence issues. Such applications are relatively easy to iden-
tify though code inspection, profiling, or simulation [8].

5. Related Work

There have been numerous implementations of parallel graph algo-
rithms using various computer architectures, including distributed
memory supercomputers [25], shared memory supercomputers [5,
17], multi-core SMP machines [6], and GPUs [15, 16]. Our work
improves upon previous GPU implementations by several folds,
introducing a new programming method that better considers the
traits of modern GPU architectures.

Although naive warp-granular task allocation had been used ad
hoc in some domains such as sparse-matrix multiplication [9], we
proposed a generalized programming method for it using explicit
SISD and SIMD phases as well as introduced the new concept of
virtual-warp which enables trade-offs between underutilization and
divergence.

Our programming method is a low-level construct that resides
just on top of the GPU programming APIs. On the other side
of the programming model spectrum are high-level approaches
that abstract away architectural traits from the user; instead, the
compiler/runtime system intelligently generates or selects proper
execution codes based on high-level user description, targeting any
processor architecture [10, 14]. Thus, these systems are actually
complementary to our low-level method; they may decide when
a virtual warp-centric method would be beneficial or what virtual
warp-size should be utilized based on high-level information such
as data access pattern analysis.

Unlike our virtual warp method, which prevents unnecessary
divergence without hardware modification, Meng et al. proposed to
modify the GPU architecture in order to address these issues [20].
When combined, these approaches complement our virtual warp
method by allowing sub-warps to execute independently; thus,
there is no need to pay the cost of divergence when using virtual
warp sizes.

In this paper, we have not explored the effect of virtual warp-
centric programming method with a GPU architecture that includes
cache memory, e.g. Nvidia’s Fermi [21]. Having cache memory
may alleviate memory divergence issues for applications where
each thread pursues an independent data stream, since the sequen-
tial locality is automatically exploited via cache. However, even
with a cache, our warp-centric programming method still provides
substantial benefits, since the cache pressure of having data streams
per warp is considerably less than that of managing data per thread.

Very recently, Agarwal et al. [3] proposed a scalable BFS algo-
rithm for multi-core CPU. Their optimization technique concurs
with our observations in Section 4.2; they saved memory band-
width by using bitmaps and intentionally avoided coherence traf-
fic as much as possible. Note that there are still rooms to further
improve GPU BFS algorithms through algorithmic enhancement.
For example, we only applied a frontier-expansion method which
maximizes sequential memory access; however it is better to apply



‘éBaseline OWarp8 dWarp16 O Warp32

12 +
Improvement (times)

15.18

SSsP

STCON

NN Kmeans

Backprop

Figure 11. Performance improvement results of GPU applications using warp-centric programming method. Comparison is against original

GPU implementation.

a fixed-point method, which manages a work-queue holding next-
level nodes, for first and last few stages where only a few nodes are
explored. It will also be interesting to apply the recent CPU tech-
niques [3] for GPUs having last-level cache, which does not support
coherence at all. We also refer interested readers to other studies on
the impact of architectural traits on various applications [19, 21],
other than graph algorithms.

6. Conclusion

Parallel execution of graph algorithms on GPUs suffered from
workload imbalance for real-world graph instances. To address
this issue, we proposed a novel virtual warp-centric programming
method, a general strategy that prevents branch divergence and
unnecessary scattering memory access. Users can also trade-off
between SIMD utilization and branch divergence by varying the
virtual warp size.

When applied to graph algorithms, our method resulted in up
to 9x speedup over previous GPU implementations. In addition, a
set of GPU benchmark applications that suffer from branch diver-
gence and scattering memory accesses was accelerated by 1.3x to
15.1x over the baseline GPU implementations. Finally, we showed
that the GPU executions of graph algorithms can outperform imple-
mentations on other architectures, mainly because of substantially
larger memory bandwidth.
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