
Large-Scale Graph Processing Algorithms on
the GPU

Yangzihao Wang, Computer Science, UC Davis
John Owens, Electrical and Computer Engineering, UC Davis

1 Overview

The past decade has seen a growing research interest in using large-scale graphs
to analyze complex data sets from social networks, simulations, bioinformatics,
and other applications. As the size of these data sets increases as we move into
the petascale and beyond, we see a need for a more efficient method for large-
scale graph analysis. Modern graphics processors (GPUs) are high-performance,
highly parallel, fully programmable architectures and could be a good fit for this
task. Initial research efforts in this area are promising, although widespread use
has not yet arrived. However, there are several challenges in graph processing,
including dependencies between vertices in the graph, irregular memory accesses
during graph processing, and scalability to larger data sets and clusters.

2 Definition of Large-Scale Graph

Sources of real-world large graphs include:

• Social graphs (Facebook, Twitter, Google+, LinkedIn, etc.)

• Endorsement graphs (web link graph, paper citation graph, etc.)

• Location graphs (map, power grid, telephone network, etc.)

• Co-occurrence graphs (term-document bipartite, click-through bipartite,
etc.)

These graphs have common characteristics. The first is their large scale.
For example, by January 2011, Facebook had about 600 million nodes; major
search engines have indexed tens of billions of webpages over a trillion nodes.
Second, these graphs are sparse, meaning the number of edges at one vertex is
far less than the total number of vertices. The third characteristic of the graphs
is rich information on nodes and edges, and we expect the graphs of interest in
this project will have substantial information associated with vertices and/or
edges. For example, each node in Facebook can have attributes such as age,

XDATA Project

gender, interests, etc. and each edge in Facebook can have attributes such as
creation time, type of relation, communication frequency, etc.

Tasks of large-scale graph analysis range from simple to advanced. Some of
the simpler fundamental large-scale graph analyses include 1) efficient search
in the graph (e.g. graph traversal and search algorithms); 2) finding patterns
in the graph (e.g. shortest path algorithms, matching algorithms, centrality
computing algorithms, and list ranking algorithms); and 3) partitioning large
graphs into sub-graphs (e.g. connected component algorithms, graph-cut al-
gorithms). Advanced large-scale graph analyses include 1) Graph indexing
and ranking (e.g. pagerank); 2) data mining (clustering and classification
algorithms); 3) structured graph query (e.g. RDF query languages such as
SPARQL) 4) recommendations.

3 Graph Algorithms on GPUs

We begin with preliminaries: what are the keys to high performance on the
GPU and what should we be measuring as we evaluate graph implementations?
Then we look at how to represent graphs on GPUs—a crucial topic since
the graph representation is critical for both parallel efficiency and memory
performance—and then proceed to survey the existing work in the field.

3.1 Keys to High Performance on the GPU

The GPUs we propose to use in this project are discrete GPUs connected to the
host CPUs by the PCI Express bus. This bus has limited bandwidth (16 GB/s
in the current generation) and without careful application design, can become a
bottleneck. Consequently successful GPU applications typically must perform
a substantial amount of computation per data element to amortize the cost of
the transfer. Fortunately, for complex graph computations, this would likely
not be an issue.

Once the data is on the GPU, the challenges include sustaining high data
bandwidth to the GPU’s memory and profitably leveraging the parallelism in
the GPU compute units. For both, minimizing divergence is key: accessing
memory in large contiguous chunks (“coalesced access”) and maximizing the
ability of threads within warps to maintain the same control path through the
code are both crucial techniques. The choice of graph data structure and graph
algorithm strongly influences the performance here.

XDATA Project

Finally, choosing algorithms with better algorithmic complexity has the
potential to make an enormous difference in the runtime of the implementation
(note the progression of breadth-first-search implementations below).

3.2 Evaluating Graph Implementations

Much of the early research in this area demonstrates that particular algorithm
implementations are possible but not optimal. Evaluations should include the
following:

Transfer costs Is the cost of transfer to and from the CPU counted in the
comparison? It is legitimate if not, since most individual graph algorithms
will not run in isolation but instead will run in series with many other
algorithms; but this needs to be mentioned.

Comparison against CPU codes In performance comparisons, does the
GPU implementation measure against top-tier CPU codes? Are those
CPU codes optimized and parallelized?

Datasets Are GPU implementations run on a wide range of datasets with
different depths and distribution of connections? Are these datasets static
or dynamic? Are they rich graphs (graphs contain typed links and vertex
attributes in addition to link weights)?

Out of core performance How does the implementation perform as the size
of the graph exceeds the size of the GPU memory?

Scalability beyond one GPU How does the implementation scale both
with the addition of GPUs on a single node and with additional nodes?

The last two points are largely unaddressed in the current literature.

3.3 Graph Data Representation

Among several graph data representations, the adjacency matrix and a collection
of adjacency lists are the two main representationss used in most existing parallel
graph processing works.4,5, 10,11,13

• The adjacency matrix is an n× n matrix where the non-diagonal entry
aij is the weight value from vertex i to vertex j, and the diagonal entry
aii can be used to count loops on single vertices. For most large-scale

XDATA Project

graphs, the resulting matrix is typically sparse; representing it directly
as a sparse matrix allows the use of existing libraries for sparse matrix
operations such as cuSparse. Katz et al.10 represent the adjacency matrix
as a 2D texture in GPU memory. The downside of such a representation
is its waste of space.

Figure 1: At left, an unweighted undirected graph; at right, its adjacency matrix.

• Instead, adjacency lists provide more compact storage for more widespread
sparse graphs. A basic adjacency list stores all edges in a graph. One
typical way of implementing it is using one array to store a list of neighbor
nodes and another array to store the offset of the neighbor list for each
node. Merrill et al.11 use the well-known compressed sparse row (CSR)
sparse matrix format to represent graphs in their BFS implementation.
The column-indices array C and row-offsets array R are equivalent to the
neighbor nodes list and the offset list in the basic adjacency list definition.
This representation enables them to use parallel primitives such as prefix
sum to reorganize sparse and uneven workloads into dense and uniform
ones in all phases of graph processing. In the context of parallel BFS,
parallel threads use prefix sum when assembling global edge frontiers
from expanded neighbors and when outputting unique unvisited vertices
into global vertex frontiers. Jia et al.9 represent the graph as an edge list
to better assign edges to threads in their centrality algorithm. Instead
of using two unequal length arrays—an offset array and a neighbor list
array—they use two even length arrays to store the vertex pair for each
edge. Their edge-centric representation requires more GPU memory
though, which could limit their application to larger graphs.

• Blelloch3 proposes the v-graph (vector graph) for graph data representa-
tion. This representation uses segmented vectors to store graph topology.
For undirected graphs, it uses a single segmented vector to store edge

XDATA Project

Figure 2: Upper left: Illustration of the adjacency list used by Merrill et al.11 Upper
right: Graph representation with vertex list pointing to a packed edge list. (From
Harish et al.5) Lower: Illustration of a node list and an edge list used by Jia et al.9

information. Each segment corresponds to a vertex and each element
within a segment corresponds to one of the edges of that vertex. For
directed graphs, it uses two segmented vectors: one for the incoming
edges, and one for the outgoing edges. Each element in the outgoing
edges vector is a pointer to a position in the incoming edges vector. For
both directed and undirected graphs, the representation uses additional
vectors to include weights and other information. A graph can be con-
verted from most other representations into the v-graph representation
by creating two elements per edge (one for each end) and sorting the
edges according to their vertex number. Parallel sorting algorithms such
as radix sort can be used to place all edges that belong to the same vertex
in a contiguous segment. The cross-pointer array in this representation
enables an O(1) step complexity of dynamic graph manipulations such as
adding or deleting an edge or a vertex, which is not easily accomplished
with the other representations.

XDATA Project

Figure 3: An example of the undirected v-graph representation. Each pointer points
to the other end of the edge. So, for example, edge w3 in vertex 2 contains a pointer
(in this case 9) to its other end in vertex 5. The segment-descriptor specifies the
number of edges incident on each vertex.

3.4 Current Graph Algorithms on GPU

3.4.1 Breadth-First Search (BFS)

As a core primitive for graph traversal, parallel BFS algorithms on GPUs are
representative of data-dependent parallel computation with irregular memory
accesses. Merrill et al.11 notes that most work in this area has quadratic
complexity,5,7, 8 using quadratic methods to inspect every edge/vertex during
every iteration. The work complexity is O(V 2 + E) as the worst case requires
V BFS iterations. The work of Harish et al.5 is the first to implement BFS
using level synchronous operations on the GPU. The algorithm processes all
the vertices at a particular level in parallel. Concurrent computation takes
place at the vertices of current level and all threads wait for other threads at
that level to finish, treating the GPU as a bulk synchronous parallel machine.
However, the algorithm shows lower performance on low degree graphs. In
such case, expansions of the frontier is very slow at every level, which limits
the amount of achieved parallelism. Also, frontier expansion will cause uneven
load balancing between different levels. However, running on a single GTX8800
GPU with a randomly generated graph, it still gives a 20–50x speedup vs. a
CPU implementation.

The work of Hong et al.7 is the first to address the irregularity of a

XDATA Project

BFS workload. They introduce a novel virtual warp-centric programming
method. Rather than threads, entire warps are mapped to vertices. During
neighbor expansion, the SIMD lanes of an entire warp are used to stripmine
the corresponding adjacency list. They later present a hybrid method8 that
dynamically chooses the best execution method for each BFS-level iteration
from three alternatives: sequential execution, multi-core CPU execution, and
GPU execution. This hybrid method can prevent poor worst-case performance,
but does not improve performance of the BFS algorithm on GPU.

The work of Merrill et al.11 is the first linear parallelization BFS algorithm
and the first on multiple GPUs. It is clearly the most complete and advanced
work on BFS traversal on the GPU. Noting that methods that require atomics
have limited scalability, they focus on fine-grained task management built upon
an efficient prefix sum. With both a memory-access-efficient data representation
of graphs and a load-balancing warp-centric algorithm, their work complexity
reaches an asymptotically optimal O(|V | + |E|). The algorithm works on
diverse graphs and gives a 3.3 billion edges per second performance on single
GPU and a 8.3 billion edges per second performance using four GPUs on a
single node for both the uniform-random and RMAT datasets. The result on
four GPUs is a roughly 6.4x speedup compared to the state-of-the-art CPU
BFS algorithm using four 8-core Intel Nehalem-based XEON CPUs.1 For
expanding the algorithm to multiple GPUs, the paper implements a simple
partitioning of the graph into equally-sized, disjoint subsets of V . However, this
method of partitioning progressively loses any inherent locality as the number
of GPUs increases. Better partitioning algorithms, graph data representations
and, hardware support of irregular memory accesses will address this issue.
Also, the cost of global synchronization between BFS iterations is much higher
across multiple GPUs. This would dominate for BFS problem in general. One
issue the paper does not address is how to expand the algorithm to multiple
GPUs on multiple nodes. Though their algorithm has minimized the required
times of global synchronization, the communication cost will still increase when
expanded to multiple GPUs on multiple nodes because of the relatively lower
network bandwidth compared to GPU-to-GPU (GPUDirect) or GPU-to-CPU
(PCIe) communication.

3.4.2 Single Source Shortest Path (SSSP) and All-Pair Shortest
Path (APSP)

Given a directed graph G(V,E) with positive weights, the single-source-shortest-
path (SSSP) problem requires finding the smallest combined weight of edges
that is required to reach every vertex V from the source vertex S. Harish

XDATA Project

and Narayanan5 propose the first GPU implementation of the traditional
SSSP serial method, Dijkstra’s algorithm, using CUDA. They also give a
Floyd-Warshall (FW) algorithm for solving the All-Pair Shortest Path (APSP)
problem, which is finding the least weighted path from every vertex to every
other vertex in the graph G(V,E). However, due to FW’s high time complexity
(O(V 3)) and space complexity (O(V 2)), their GPU implementation can only
be used on very small graphs. They propose another APSP algorithm that
uses their GPU SSSP formulation in order to process larger-scale graphs. Their
GPU SSSP, however, suffers from the inefficiency of atomic operations. Their
SSSP and APSP algorithms using an NVIDIA GTX8800 GPU show 70 and 17
times speedup over the serial implementation on an Intel Core 2 Duo processor.
However, the performance for real-life graphs with several million vertices does
not show the same improvement because of the low average degree of these
graphs. A degree of 2–3 makes these graphs almost linear. In the case of linear
graphs, parallel algorithms have poorer performance, as it becomes necessary
to process every vertex in each iteration. Katz and Kider presented a tiled
FW algorithm in 2008.10 It revises the original straightforward FW algorithm
into a hierarchically parallel method that can be distributed, in parallel, across
multiple GPUs. The algorithm uses an adjacency matrix to represent graph and
divides the matrix into tiled submatrices of equal size. During each phase, only
submatrices which are dependent on each other are computed. This strategy
enables out-of-core graph processing, reduces the overall space complexity,
and makes the algorithm scalable to multi-GPUs. Compared to Harish and
Narayanan’s work, this method has a 5.0–6.5x increase in performance due to
a better shared-memory cache-efficient strategy.

Harish et al.6 implement a Gaussian elimination based APSP algorithm
on GPU. The algorithm splits each APSP step recursively into 2 subproblems
involving graphs of half the size. The base case is when there are 16 or fewer
vertices in a subgraph. They achieve a speed up of 2–4 times over Katz and
Kider for larger general graphs with more than 30,000 vertices.

The APSP algorithm can be further used in several advanced graph algo-
rithms such as computing betweenness centrality in graphs.

3.4.3 Other Algorithms

Minimum Spanning Tree (MST) A spanning tree of a connected, undi-
rected graph is a subgraph that connects all the vertices together. An MST is
a spanning tree with weights less than or equal to the weight of every other
spanning tree. Harish et al.6 implement a modified parallel Boru̇vka algorithm
on CUDA. They create partial spanning trees called supervertices from all

XDATA Project

vertices; supervertices can grow individually and they merge when come in
contact. This algorithm performs well bacause each supervertex can grow
independently. However, the merging step is an irregular operation as an
uneven number of vertices might assigned to a single supervertex. Instead of
using irregular atomic operations, Vineet et al.15 exploit parallel data mapping
primitives such as scan, split and compaction on the GPU for marking MST
edges and merging supervertices. They gain a speed up of 8 to 10 times over
their previous implementation. Running on a NVIDIA Tesla S1070, their
implementation achieves a speed up of nearly 30 to 50 times over the serial
implementation using the Boost C++ graph library on an Intel Core 2 Quad,
Q6600, 2.4 GHz processor.

Rostrup et al.12 introduce a data-parallel adaptation of Kruskal’s MST
algorithm that uses Boru̇vka’s algorithm to solve subproblems in parallel on the
GPU. Tests on random and real-world graphs with up to 25 million vertices
and 240 million edges on an NVIDIA Tesla T10 GPU show that their method
can process graphs 4X larger and up to 10X faster than was possible with
Vineet et al.’s Boru̇vka’s MST algorithm for the GPU. Their use of sort and
split primitives also show a possible way to partition the graph into several
subgraphs.

Graph Matching A matching or independent edge set in a graph is a set of
edges without common vertices. Finding a maximal matching of a graph has
applications in bioinformatics and can be used to solve other graph problems
such as vertex coloring. Auer and Bisseling4 give a fine-grained shared-memory
parallel algorithm on GPU for greedy undirected graph matching. Running on
an NVIDIA Tesla C2050 GPU, on large-scale graphs with millions of vertices,
the algorithm achieves a speedup factor of 6.8 over the serial implementation
on Intel Xeon E5620 processors with hyperthreading.

Graph Partition A graph cut performs a partition of the vertices of a
graph into two disjoint subsets. It is an algorithm which has found several
applications in computer vision. For distributed large-scale graph processing,
it is also an important graph partition algorithm. Vineet and Narayanan16

propose a GPU push-relabel maxflow/mincut algorithm. Their 90 graph cuts
per second on 640×480 images is 10–12 times faster than the best sequential
algorithm reported in 2008. However, their implementation is bounded by the
global BFS height value relabel step during each iteration of the algorithm.
The global BFS step makes it difficult to expand the algorithm to large-scale
graphs while maintaining the same performance. Also, current GPU graph

XDATA Project

partition algorithms are all 2-way cuts algorithms. They do not address the
problem of partitioning the graph into multiple subgraphs, which is known as
the minimum k-cut problem. The goal is to find a set of edges whose removal
would partition the graph into k connected components. The minimum k-
cut problem is NP-complete when k is part of the input. With a fixed k,
the problem still has a complexity of O(|V |k2). Since the purpose of graph
partitioning is load balancing and task scheduling, for static graphs that only
need to run once, the algorithm can run on either the CPU or GPU. But
an efficient parallel implementation of such an algorithm on a GPU would
improve the performance if the graph is dynamic and the graph structure
changes frequently in real time.

Note that there are several advanced topics related to large-scale graph pro-
cessing on GPUs such as mining, clustering, querying and pagerank computing,
etc. Since our goal here is to build a GPU large-scale graph processing library
containing basic primitives required by more advanced applications, we will
not talk about these advanced topics for now and will continue to talk about
the issues of current GPU graph algorithms.

4 Issues and Challenges

4.1 Issues

Although there have been several large-scale graph processing algorithms on
GPU, we see two major issues which all current GPU graph algorithms fail to
consider. First, all current GPU graph algorithms view vertices and edges in
the graph as simple nodes, ignoring the possible rich information associated
with them in real-world graphs. As we expect our use cases of interest will have
complex information on edges and vertices, we need to address efficient storage,
access, and updates of this information during graph processing. Second, all
current GPU graph algorithms assume graphs to be static. However, several
real-world large-scale graph use cases require dynamic graphs, where The
topology of the graphs themselves and information on their vertices and edges
can change in real-time. Robust graph algorithms should be aware of these
real-time modifications and be able to respond to them and adjust the result
accordingly.

XDATA Project

4.2 Challenges

As the size of graph we want to process increases to petascale and beyond, there
is a growing need to expand current parallel graph algorithms running on single
GPU to GPU clusters on multi-node. This poses several challenges. First,
multi-GPU communication is difficult as currently GPUs still cannot source or
sink network I/O; thus supporting dynamic and efficient communication across
many GPUs is hard. Second, GPUs do not have inherent out-of-core support
and virtual memory. Finally, most graph algorithms have global dependencies
between vertices, thus finding graph partitioning strategy for implementating
algorithms on GPU cluster is difficult.

Stuart and Owens point out that for GPU cluster applications, the keys
to parallel efficiency are to reduce communication times as much as possible
and to overlap communication with computation,14 because in such a scenario
communication is almost always the bottleneck and GPU computation is
relatively cheap. In their GPU-MapReduce library (GPMR) for large datasets
running on GPU cluster, they partition key-value pairs into chunks and bin
them to different GPUs. While one chunk is being processed, another chunk
can be simultaneously streamed to or from the GPU. They also have a single
module tracking the per-GPU work in a dynamic queue. If one GPU finishes
its work in its local queue and other GPUs have much more work to do, they
shift chunks between the local queues.

This method provides us a good example of assigning workloads and data
to machines within a GPU cluster and keeping the load on every node balanced.
However, for large-scale graph processing, finding a way to partition the graph
data into parts with small dependency on each other is still a challenge, though
we expect that the same methods used for CPU partitioning will be immediately
applicable. Even on one node, when the size of graph data exceeds the limit of
GPU memory, arranging data transfers to maintain GPU utilization and high
throughput is also a challenging problem.

The other major challenge with out-of-core graph processing compared to
MapReduce is the predictability of MapReduce accesses vs. the non-predictable
access patterns of a graph, where the next chunk to be accessed is dynamically
determined. It appears to be likely that an aggressively prefetching memory
manager will be necessary to keep the GPU full of work. This is a significant
challenge as to the best of our knowledge, such a system has not been built in
the context of GPUs.

Other challenges include building data structures for efficient storage, ac-
cess, and updates of information on vertices and edges, and designing robust
algorithms for both static and dynamic graphs.

XDATA Project

5 Conclusion

Recent work on GPU graph algorithms shows that GPUs are well-suited for
doing graph processing and can achieve high levels of performance on a broad
range of graphs. However, most current GPU graph algorithms lack both
multi-node scalability and out-of-core support, and run on simple data rather
than needing to access and update rich information on vertices and edges and
dynamically updating graphs.

Recently, there are several new features of NVIDIA’s “Kepler” family of
GPUs that could benefit this project. One feature is dynamic parallelism,
which enables a CUDA kernel to create and synchronize new nested work. This
will improve the load-balancing of several graph algorithms. Another feature is
GPUDirect, which enables GPUs within a single computer, or GPUs in different
servers located across a network, to directly exchange data without needing to
go to CPU/system memory. This will improve the cross-node communication
efficiency, which often serves as the bottleneck of multi-node applications.
Recently, several major chip manufacturers have been designing hybrid single-
chip CPU/GPU architectures. The advent of Intel’s Many Integrated Core
(MIC), AMD’s Accelerated Processing Units (APUs), and NVIDIA’s Denver
Architecture will reduce the cost of data sharing between CPU and GPU and
allow more efficient heterogeneous algorithms.

Trends and looking forward The last five years of the GPU has seen the
advent of a full programmable interface and a rapid growth in both the software
capabilities and hardware features available to the programmers. The GPU
now has full support for double-precision computation, ECC memory, and
hardware caches.

The most significant successes on GPUs have led to libraries (such as
NVIDIA’s CUBLAS) that are optimized and offer significant performance gains.
More recently, more irregular computation patterns have led to successes as
well; the timeframe of NVIDIA’s CUSPARSE library is instructive, with its core
data structure introduced at Supercomputing 20092 and CUSPARSE’s release
roughly a year later (August 2010). Generally advances in data structures have
been software ones, with more complex data structures developed each year on
GPUs.

Graph processing on GPUs offers several challenges that make it more
complex than any existing widely-used libraries. Compared to the implementa-
tions in these libraries, graph algorithms are substantially more complex and
wide-ranging and have more irregular and complex access patterns. Existing
libraries handle neither out-of-core nor multi-node computation.

XDATA Project

From a hardware perspective, we see several significant challenges. The
GPU is far from the CPU in terms of bandwidth and latency, and as with all
GPU algorithms, it is necessary to do ample work on the GPU to mitigate the
cost of transfer. The size of the largest available GPU memory system (6 GB)
is much smaller than a high-end CPU server’s, which greatly increases the need
for locality in a large graph implementation. The GPU also lacks local control
for tasks such as initiating data transfer to or from the CPU and launching its
own work, though this last point is the subject of NVIDIA’s new “dynamic
parallelism” feature; nonetheless it is expected that the initial implementation
of this feature will offer no performance advantages but instead is merely a
proof of concept. Nonetheless we expect over the lifetime of this grant, newer
GPUs (later Keplers and eventually Maxwell) will allow dynamic parallelism
to be a first-class component in the GPU toolbox.

The other emerging hardware trend is single-chip heterogeneous devices,
notably Intel’s Ivy Bridge with a powerful CPU and a fairly strong GPU,
though one only programmable with OpenCL. Perhaps more interesting for us
is NVIDIA’s Project Denver, likely a modest ARM CPU and a beefy GPU, but
this chip has not yet been announced much less shipped. One of the important
outcomes of this project will be to understand the cost of a high-latency, low-
bandwidth connection between CPUs and GPUs, and if this cost is too high,
then a Denver machine may be the best fit for this applications domain.

On the software side, the key concepts are locality, divergence, and effi-
cient algorithms. For locality, we must take advantage of GPU caches and
programmer-managed shared memories as much as possible, and must partition
graphs efficiently both across nodes as well as across the CPU-GPU boundary
to gain maximum efficiency. The techniques will not be radically different
than what we’d see with multi-node CPU implementations, but in general
we will be more willing to trade extra computation for more locality. For
divergence, arranging both memory accesses as well as SIMD execution to
minimize divergence is crucial for efficiency, as graph algorithms can easily
suffer from divergence in either case. And efficient algorithms are certainly
critical for our overall performance. Merrill’s recent work showed the benefits of
both data layouts that minimize divergence as well as superior algorithms that
attained better asymptotic complexity. He also eschewed atomic accesses in
favor of scan-based primitives and his philosophy there will certainly influence
ours as well.

Depending on DARPA’s applications of interest, it may be desirable and
possible to pursue a ranking on the Graph500 list. GPU machines currently
do not appear on this list simply because the efficient primitives have not
been developed or have not been brought to Graph500 applications. (Note

XDATA Project

machine #10 on the list is from the excellent GPU team at Tokyo Tech with
its high-performance and influential Tsubame machine; yet the entry on the
list only uses Tsubame’s CPUs.)

Bibliography

[1] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A. Bader.
Scalable graph exploration on multicore processors. In Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages 46:1–46:11,
Washington, DC, USA, November 2010. IEEE Computer Society.

[2] Nathan Bell and Michael Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC ’09: Proceedings
of the 2009 ACM/IEEE Conference on Supercomputing, pages 18:1–18:11,
November 2009.

[3] Guy E. Blelloch. Vector models for data-parallel computing. MIT Press,
Cambridge, MA, USA, August 1990.

[4] B. O. Fagginger Auer and R. H. Bisseling. A GPU algorithm for greedy
graph matching. In Rainer Keller, David Kramer, and Jan-Philipp Weiss,
editors, Facing the Multicore-Challenge II, pages 108–119. Springer-Verlag,
Berlin, Heidelberg, May 2012.

[5] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms
on the GPU using CUDA. In Proceedings of the 14th International Con-
ference on High Performance Computing, HiPC’07, pages 197–208, Berlin,
Heidelberg, December 2007. Springer-Verlag.

[6] Pawan Harish, Vibhav Vineet, and P. J. Narayanan. Large graph al-
gorithms for massively multithreaded architectures. Technical Report
IIIT/TR/2009/74, International Institute of Information Technology Hy-
derabad, INDIA, 2009.

[7] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun.
Accelerating CUDA graph algorithms at maximum warp. In Proceedings
of the 16th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’11, pages 267–276, New York, NY, USA, February
2011. ACM.

[8] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient parallel
graph exploration on multi-core CPU and GPU. In Proceedings of the
2011 International Conference on Parallel Architectures and Compilation
Techniques, PACT ’11, pages 78–88, Washington, DC, USA, October 2011.
IEEE Computer Society.

[9] Yuntao Jia, Victor Lu, Jared Hoberock, Michael Garland, and John C.
Hart. Edge v. node parallelism for graph centrality metrics. In Wen-mei W.
Hwu, editor, GPU Computing Gems Jade Edition, chapter 2, pages 15–28.
Morgan Kaufmann, October 2011.

[10] Gary J. Katz and Joseph T. Kider, Jr. All-pairs shortest-paths for
large graphs on the GPU. In Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH ’08,
pages 47–55, Aire-la-Ville, Switzerland, Switzerland, June 2008. Euro-
graphics Association.

[11] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable GPU
graph traversal. In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’12, pages
117–128, New York, NY, USA, February 2012. ACM.

[12] Scott Rostrup, Shweta Srivastava, and Kishore Singhal. Fast and memory-
efficient minimum spanning tree on the GPU. October 2011.

[13] Jyothish Soman, Kothapalli Kishore, and P J Narayanan. A fast GPU
algorithm for graph connectivity. In 24th IEEE International Symposium
on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW),
2010, pages 1–8, April 2010.

[14] Jeff A. Stuart and John D. Owens. Multi-GPU MapReduce on GPU
clusters. In Proceedings of the 25th IEEE International Parallel and
Distributed Processing Symposium, pages 1068–1079, May 2011.

[15] Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J. Narayanan.
Fast minimum spanning tree for large graphs on the GPU. In Proceedings
of the Conference on High Performance Graphics 2009, HPG ’09, pages
167–171, New York, NY, USA, June 2009. ACM.

[16] Vibhav Vineet and P. J. Narayanan. CUDA cuts: Fast graph cuts on
the GPU. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, 2008. CVPRW ’08., pages 1–8, June
2008.

